Critical exponents of self-avoiding walks on a family of truncated n-simplex lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 235115
(http://iopscience.iop.org/0305-4470/23/21/046)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:43

Please note that terms and conditions apply.

ADDENDUM

Critical exponents of self-avoiding walks on a family of truncated \boldsymbol{n}-simplex lattices

Sanjay Kumar and Yashwant Singh
Department of Physics, Banaras Hindu University, Varnasi-221005, India

Received 26 July 1990

Abstract. The values of critical exponents of self-avoiding walks on an n-simplex lattice with $n \rightarrow \infty$ are evaluated.

Recently we developed an approximate theory for critical exponents of self-avoiding walks (SAWs) on n-simplex lattices when n is large [1]. The purpose of this communication is to calculate the values of the exponents in the limit $n \rightarrow \infty$. The notation adopted here is that of [1].

The recursion relation for the swollen state in the limit of large n, is [1]

$$
\begin{equation*}
A_{r+1}=A^{2}+(n-2) A^{3}+(n-2)(n-3) A^{4}+\ldots+(n-2)!A^{n} . \tag{1}
\end{equation*}
$$

As usual, the subscript r, which indicate the level of iteration, is dropped. Differentiation of (1) at its fixed point, with respect to A^{*} gives the eigenvalue

$$
\begin{equation*}
(n+1)-\left(1 / A^{*}\right) \tag{2}
\end{equation*}
$$

where A^{*} is the fixed point of (1). The series of (1) is summed to give

$$
\begin{equation*}
A_{r+1}=(n-2)!A^{n}\left[\exp (1 / A)-\sum_{l=n-1}^{\infty}\left(1 / l!A^{l}\right)\right] \tag{3}
\end{equation*}
$$

It is easily seen that the second term in the square bracket of (3) is negligible compared to the first in the limit $n \rightarrow \infty$. The term with maximum contribution in the series of (1) is found to be $m \simeq(1 / A)$ and the width of the maximum \sqrt{m}. Since in the limit $n \rightarrow \infty$,

$$
(1 / A)+\left(1 / A^{1 / 2}\right) \ll n-1
$$

the contribution arising from the second term in (3) is limited to the region far beyond from the maximum and goes to zero as $1 / n^{2}$. The fixed point of (3) is found to be

$$
\begin{equation*}
A^{*}=(1+s) /(n+1) \tag{4}
\end{equation*}
$$

for $n \rightarrow \infty$, where

$$
\begin{equation*}
s \sim((\ln n) / n)^{1 / 2} \tag{5}
\end{equation*}
$$

Substituting (4) and (5) into (2), we find

$$
\begin{equation*}
\lambda=(n+1)^{p} \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
p=\frac{1}{2}[1+(\ln (\ln n) / \ln n)] . \tag{7}
\end{equation*}
$$

Note that the value of p given in [1] was determined empirically by fitting the data reported in table 1 of [1]. Equation (7) gives the value of p which is good in the limit $n \rightarrow \infty$ and may not reproduce the eigenvalues given in the table 1 of [1].

The relation for exponents ν, α and γ given in terms of p by (5.10) and (5.12) of our previous work [1], however, remain valid in the limit $n \rightarrow \infty$. When we substitute the value of p given by (7) into these equations we find

$$
\begin{align*}
& \nu \sim(\tilde{d} / \bar{d})[1-(\ln (\ln n) / \ln n)] \tag{8}\\
& \gamma \sim \tilde{d}[1-(\ln (\ln n) / \ln n)] . \tag{9}
\end{align*}
$$

Thus in the limit $n \rightarrow \infty$ we find $\nu \sim(2 / \bar{d})$ and $\gamma \rightarrow 2$. The scaling relation,

$$
\begin{equation*}
\alpha+\gamma=2 \tag{10}
\end{equation*}
$$

remains unchanged.
We are thankful to Deepak Dhar for stimulating discussions and to the Department of Science and Technology (India) and the University Grants Commission (India) for the financial help.

Reference

[1] Kumar S, Singh Y and Joshi Y P 1990 J. Phys. A: Math. Gen. 232987

